Some open questions for Origlife...

Eörs Szathmáry

Collegium Budapest

München

Eötvös University

Units of evolution

- 1. multiplication
- 2. heredity
- 3. variation

hereditary traits affecting survival and/or reproduction

Gánti's chemoton model (1974)

metabolism

membrane

growth

template copying

ALL THREE SUBSYSTEMS ARE AUTOCATALYTIC

Pathways of supersystem evolution

INFRABIOLOGICAL SYSTEMS

A crucial insight: Eigen's paradox (1971)

- Early replication must have been errorprone
- Error threshold sets the limit of maximal genome size to <100 nucleotides
- Not enough for several genes
- Unlinked genes will compete
- Genome collapses
- Resolution???

Simplified error threshold

$$\frac{dx/dt = xKQ - x\Phi,}{dy/dt = yk + xK(1 - Q) - y\Phi,}$$

$$x + y = 1$$

$$x = \frac{(KQ - k)}{(K - k)}$$

$$v < \frac{\ln(K/k)}{(1 - q)}$$

Von Kiedrowski's replicator

A more complex chemoton

- Submitted to *Plos One*
- A stochastic simulation

A radically new look at the paradox

- Stochastic simulation of the chemoton with two different templare monomers
- Found coexistence of templates that were thought to be competitors
- Dynamical coexistence is sequence-dependent
- Carries over to deterministic solutions of the chemoton, and even to simplified systems (metabolism and templates in flow reactor)

Solution of the paradox requires systematic search and insight

- Numerical solutions take a lot of time
- It is important to see how this carries over to long templates
- CERN computing welcome

The stochastic corrector model for compartmentation

Szathmáry, E. & Demeter L. (1987) Group selection of early replicators and the origin of life. *J. theor Biol.* **128,** 463-486.

Grey, D., Hutson, V. & Szathmáry, E. (1995) A re-examination of the stochastic corrector model. *Proc. R. Soc. Lond.* B **262**, 29-35.

Dynamics of the SC model

- Independently reassorting genes
- Selection for optimal gene composition between compartments
- Competition among genes within the same compartment
- Stochasticity in replication and fission generates variation on which natural selection acts
- A stationary compartment population emerges

What is the limit of genome size in the SCM?

- It is about a dozen unlinked genes
- Selection for chromosomes
- Requires evolutionary increase in replication accuracy
- Calls for evolution of better-than-random segregation mechanisms

This is surprisingly linked to the origin of enzyme specificity

- Imagine a pathway to be enzymatized
- Is there selection from a few, inefficient, multifunctional enzymes to many, efficient, highly specific enzymes (Kacser question)
- The answer is negative in the SCM due to the assortment load (if one gene is lacking, others can do the work)

Chromosomes favour metabolic evolution

- Because genes are not lost due to reassortment
- Highly specific enzymes evolve
- If there selection againts side reactions!
- Further work needed with better chemical model
- To be submitted soon
- Requires CERN resources

The origin of metabolism

- Is a hard question
- Coevolution with other subsystems is likely
- One can generate some pre-insights, but this does not replace detailed simulations

The problems of phylogenetic reconstruction (top-down)

- LUCA was too advanced
- Reconstructions (e.g. Delaye *et al. OLEB* in press) cannot reach deep enough
- The fact that metabolic enzymes are not well conserved does not mean that they were not there!
- Scaffolds (pre-RNA, primitive metabolic reactions) may have disappeared without leaving a trace behind!!!
- A more synthetic approach is needed
- General evolutionary mechanisms must be sought

Two contrasting modes of enzymatic pathway evolution

Horowitz (1945): retroevolution

- Ancient non-enzymatic pathway:
- $A \rightarrow B \rightarrow C \rightarrow D$
- Progressive depletion of D, then C, then B, then A
- Selection pressure for enzyme appearance in this order
- Homologous enzymes will have different mechanisms

Jensen (1976) enzyme recruitment (patchwork)

- One possible mechanism: ambiguity and progressive evolution of specificity
- Homologous enzymes will have related mechanisms
- Enzyme recruitment from anywhere (opportunism)

The two views are not necessarily in contradiction

Some elementary considerations

- Autotrophy impossible
- •Enzymatic pathways are likely to be radically new inventions

- Autotrophy possible
- •Enzymatic pathways may resemble non-enzymatic ones

Organic synthesis

Life

Environment 1

Environment 2

Further complication of supersystem organization

• The example of the Template/Boundary system: progressive distinction from the environment

Metabolites pass freely

Metabolites are hindered

Evolution of metabolism: primitive heterotrophy with pathway innovation

enzymatic reaction

→ Evolved

Necessarily heterotrophic protocell

Assume D is the most complex

Evolution of metabolism: primitive autotrophy with pathway retention

Retroevolution is also likely because of membrane coevolution

Progressive sequestration

- Initially only templates are kept in
- They can evolve catalytic properties
- Carriers and channels can also evolve
- Membrane permeability can become progressively restrictive
- Finally, only a very limited sample of molecules can come in
- Inner and outer environments differentiate
- Membrane and metabolism coevolve gradually

All these ingredients (and more) must be put together

- Supersystem evolution
- Changing environments
- Progressive sequestration
- Duplication and divergence of enzymes
- Selection for cell fitness
- Network complexification
- The platform by Christoph Flamm
- Computational resources of CERN!