Autocatalytic Sets and the Origin of Life

Wim Hordijk, Mike Steel and Stuart Kauffman

Overview

- Origin of life problem.
- Catalytic reaction systems and autocatalytic sets.
- Algorithm for finding autocatalytic sets.
- Random catalytic reaction systems.
- Simulation results.
- Conclusions.

The Origin of Life

- Life as we know it depends on interplay between DNA & proteins.
- "Chicken & Egg" problem:
 - DNA & protein world too complex to have arisen all at once.
 - Which came first: the chicken (proteins, phenotype), or the egg (DNA, genotype)?
- Answer: Probably neither one!

The RNA World

- RNA is both genotype and phenotype:
 - It encodes genetic information.
 - It can act as a catalyst (ribozymes).
- Life started as collection of (self-)replicating catalytic RNA molecules.
- Problems:
 - How did the (building blocks of the) first RNA molecules appear?
 - How to go from RNA to DNA & proteins?

Prebiotic Metabolism

- "Universal" metabolism: citric acid cycle.
- Reverse citric acid (rTCA) cycle generates basic building blocks of organic molecules.
- rTCA cycle is an autocatalytic cycle.
- Emergence of autocatalytic cycle(s) as intermediate step between (in)organic chemistry and RNA World.

From RNA to DNA & Proteins

- RNA starts encoding and synthesizing proteins.
- Proteins take over catalytic functions, enabling longer RNA, enabling more complex proteins...
- Proteins start constructing DNA molecules.
- DNA (more stable) takes over storing genetic information, enabling even more complex proteins...
- Hypercycles, Darwin-Eigen cycle, autocatalytic sets...

Origin of Life Scenario

(In)organic chemistry Prebiotic metabolism **RNA World Proteins**

Motivation

 Autocatalytic sets seem to play an important role in several steps in the given OoL scenario.

 Unclear how likely it is that autocatalytic sets emerge "spontaneously".

Overview

- Origin of life problem.
- Catalytic reaction systems and autocatalytic sets.
- Algorithm for finding autocatalytic sets.
- Random catalytic reaction systems.
- Simulation results.
- · Conclusions.

Catalytic Reaction System

$$X = \{a, b, c, d, e, f, g\}$$

$$R = \{r_1, r_2, r_3, r_4\}$$

$$C = \{(d, r_1), (a, r_2), (f, r_4)\}$$

$$F = \{a, b\}$$

$$r_1: a+b \xrightarrow{d} c$$

$$r_2: b+c \xrightarrow{a} d$$

$$r_3: c+d \rightarrow e+f$$

$$r_4: a+e \xrightarrow{i} g$$

Catalytic Reaction System

- Let R be a set of reactions and X be a (sub)set of molecules:
 - The closure of X relative to R is the set of all molecules that can be constructed from X by repeated application of reactions in R.

$$F = \{a, b\}$$

$$cl_R(F) = \{a, b, c, \ldots\}$$

$$cl_{R}(F) = \{a, b, c, d, ...\}$$

$$cl_{R}(F) = \{a, b, c, d, e, f, ...\}$$

$$cl_{R}(F) = \{a, b, c, d, e, f, g, ...\}$$

$$cl_{R}(F) = \{a, b, c, d, e, f, g\}$$

Autocatalytic Sets

- Given a catalytic reaction system with food set F, a (sub)set R of reactions is:
 - Reflexively autocatalytic (RA) if every reaction in R is catalyzed by at least one molecule in the closure of F relative to R.
 - F-generated (F) if every reactant in R is in the closure of F relative to R.
 - RAF if both RA and F.
- Autocatalytic cycles & sets are specific instances of an RAF set.

Example of RAF Set

$$F = \{a, b\}, R = \{r_{1}, r_{2}\}\$$

 $cl_{R}(F) = \{a, b, c, d\}$

Overview

- Origin of life problem.
- Catalytic reaction systems and autocatalytic sets.
- Algorithm for finding autocatalytic sets.
- Random catalytic reaction systems.
- Simulation results.
- Conclusions.

Finding RAF Sets

- Reduction rule: For each reaction r in R for which
 - 1) all catalysts, or
 - 2) one or more reactants
 - are not in the closure of F relative to the current R, remove r from R.
- Reduction function:
 - $\gamma(R)$: apply above reduction rule to current R.

Finding RAF Sets

Construct a sequence of reaction sets:

$$R_{i+1} = \gamma(R_i) \qquad R_{i+1} \subseteq R_i$$

• Consider R_{∞} (in practice $\infty \leq |R|$).

• Theorem:

A catalytic reaction system has an RAF set if and only if R_{∞} is non-empty (in which case it is the maximal RAF set).

RAF Algorithm

- 1. Start with the complete reaction set *R* and food set *F*.
- 2. Compute the closure of the food set *F* relative to the current reaction set *R*.
- 3. Apply the reduction rule to *R*.
- 4. Repeat steps 2 and 3 until no more reactions can be removed.

Running time: $O(|X||R|^3)$ $O(|R|^2 \log |R|)$

$$F = \{a, b\}$$

 $cl_{R}(F) = \{a, b, c, d, e, f, g\}$

no
$$x \in cl_R(F):(x,r_3) \in C$$

$$F = \{a, b\}$$

$$cl_R(F)=\{a,b,c,d\}$$

$$e \notin cl_R(F)$$

Maximal RAF set R_{∞}

Overview

- Origin of life problem.
- Catalytic reaction systems and autocatalytic sets.
- Algorithm for finding autocatalytic sets.
- Random catalytic reaction systems.
- Simulation results.
- Conclusions.

Random Catalytic Reaction Systems

- Molecules X:
 - Bit strings of length at most n.
- Reactions R:
 - Ligation: 000 + 11111 --> 00011111
 - Cleavage: 1010101 --> 10101 + 01
- Food set F:
 - All molecules of length at most t (<< n).

Random Catalytic Reaction Systems

- Catalyzations *C*:
 - Assign at random according to some probability: $Pr[(x,r) \in C] = p(n)$
- Expected (average) number of reactions catalyzed per molecule:
 - $f(n) = p(n) \times |R|$

Probability of RAF Sets

• Let P_n be the probability that a random catalytic reaction system has an RAF set and consider $P_\infty = \lim_{n \to \infty} P_n$

Kauffman:

•
$$p(n)=c$$
 $(f(n)\propto 2^n) \Rightarrow P_{\infty}=1$

Lifson:

•
$$f(n) = c \quad (p(n) \propto 1/|R|) \quad \Rightarrow P_{\infty} \neq 1$$

Probability of RAF Sets

- Steel (2000):
 - $f(n) \ge cn^2 \Rightarrow P_{\infty} = 1$
 - $f(n) < \frac{1}{3}e^{-1} \Rightarrow P_{\infty} = 0$
- Main questions:
 - What happens between constant and quadratic level of catalyzation?
 - For fixed n, how does the transition from prob 0 to 1 happen with increasing p(n)?

Computer Simulations

- With n up to 20 and varying values of p(n).
- $t=2 \Rightarrow F=\{0,1,00,01,10,11\}$
- 100 to 10,000 instances (depending on *n*).
- Apply RAF algorithm to instances of random catalytic reaction systems.
- Count how many times an RAF is found.

Overview

- Origin of life problem.
- Catalytic reaction systems and autocatalytic sets.
- Algorithm for finding autocatalytic sets.
- Random catalytic reaction systems.
- Simulation results.
- · Conclusions.

Probability of RAF Sets

Linear Growth Rate

A: 1.0970+0.0189n B: -0.4736+0.7012n C: 1.6339n

Minimum Molecule Set Size

p=0.000002: n=15, |X|=65,000

Template-based Catalysis

Catalysts must match complement of 4-site reaction template.

Running Time

Overview

- Origin of life problem.
- Catalytic reaction systems and autocatalytic sets.
- Algorithm for finding autocatalytic sets.
- Random catalytic reaction systems.
- Simulation results.
- Conclusions.

Conclusions

- Formalized the notion of catalytic reaction systems and autocatalytic (RAF) sets.
- Introduced a polynomial-time algorithm for finding RAF sets in catalytic reaction systems.
- Shown that a linear growth rate in level of catalysis (with size *n* of largest molecules) suffices for emergence of RAF sets.
- Derived required minimum size of molecule set given a fixed probability of catalysis.
- Provided an example of model extensions, such as template-based catalysis.

Suggestions for Future Work

- Study molecular dynamics on reaction graphs and RAF sets.
- Study real biochemical reaction networks.
- Evolve catalytic reaction networks and/or RAF sets (e.g. with genetic algorithms).

References

- M. Steel. The emergence of a self-catalysing structure in abstract origin-of-life models. *Applied Mathematics Letters* **3**, 91-95, 2000.
- W. Hordijk and M. Steel. Detecting autocatalytic, self-sustaining sets in chemical reaction systems. *Journal of Theoretical Biology* **227**, 451-461, 2004.
- E. Mossel and M. Steel. Random biochemical networks: The probability of self-sustaining autocatalysis. *Journal of Theoretical Biology* 233, 327-336, 2005.
- W. Hordijk, J. Hein and M. Steel. Autocatalytic sets and the origin of life. *Entropy* **12**, 1733-1742, 2010.
- W. Hordijk, S. A. Kauffman and M. Steel. Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems. *International Journal of Molecular Sciences* 12(5), 3085-3101, 2011.

Which came first...?

